Montag, 17. September 2018

Die Endfeed Antenne - das unbekannte Wesen.



Endfeed Antennen - endgespeiste Halbwellenstrahler - liegen im Trend. Besonders bei SOTA-Stationen sind sie beliebt.
Dominierten bisher die Fuchskreise als Methode der Speisung bei den endgespeisten Halbwellenstrahlern, werden diese nun von UNUN'S abgelöst, vorzugsweise mit einem Transformationsverhältnis von 1:64.

Die Überlegung dahinter ist folgende: An den Enden eines Halbwellendipols sei ein Strahlungswiderstand von zirka 3200 Ohm vorhanden. Das ist eine Annahme - messen lässt sich das nicht ohne Gegenpol.
3200 Ohm geteilt durch 64 ergeben 50 Ohm, und so könnte man direkt ein Koaxialkabel an der Primärwicklung des Trafos anschließen.
Da ein endgespeister Halbwellenstrahler die gleiche Länge eines Halbwellendipols besitze, wird argumentiert, arbeite er genau gleich - mit Strommaximum in der Mitte und Spannungsmaxima an den Enden - und brauche deshalb kein Gegengewicht. Zudem könne ein z.B. für 80m bemessener Strahler auch auf den harmonischen Bändern 40, 20 und 10m arbeiten, da diese ein Mehrfaches einer halben Wellenlänge betragen.

Eine einleuchtende Theorie, nicht wahr? Auch ich habe sie in früheren Blogeinträgen vertreten.

Leider ist sie falsch.

Das heißt aber nicht, dass eine solche Antenne nicht strahlt und dass man damit keine QSO's fahren kann. Das Universum der Funkamateure ist voll von Antennen mit falschen und unzureichenden Erklärungen mit denen jeden Tag erfolgreich Verbindungen gemacht werden. In unzähligen Anekdoten über erfolgreiche QSO's wird dabei fleißig an Legenden gestrickt.

Da können doch einige "unwesentliche" physikalische Grundlagen nicht dagegen halten, oder?
Eine davon ist zum Beispiel der Umstand, dass ein Strom nicht nur in eine Antenne hineinfließen, sondern in gleicher Stärke auch wieder herausfließen muss, damit eine Leistung übertragen werden kann und die Antenne strahlt.
Eine generelle Regel, die überall gilt, wo Strom fließt: Wer's nicht glaubt, der schließe eine Lampe an eine Batterie und messe den Strom mal beim Minus, dann beim Pluspol. Er ist auf beiden Seiten gleich hoch, nichts bleibt hängen, Strom wird nicht vernichtet. Und trotzdem brennt die Lampe ;-)

Bei der Dipolantenne ist es das gleiche Spiel: Der Strom fließt über die Seele des Koaxialkabels in die eine Dipolhälfte und über die Innenseite der Abschirmung von der anderen Dipolhälfte wieder zurück - und umgekehrt. Ist ja Wechselstrom ;-)
Zwischen der linken und der rechten Dipolhälfte befindet sich in der Regel keine Lampe, sondern ein elektromagnetisches Feld und schließt den Stromkreislauf. Da ich ein Steampunker bin, bezeichne ich es einfach als Aether.

Oft macht der Strom was er will, und nur ein Teil fließt auf der Innenseite der Koax-Abschirmung zurück zum Sender wie es sich gehört. Der restliche Teil des Stroms fließt dann über die Außenseite der Abschirmung zurück. Das nennt man Mantelwellen.

Doch kommen wir zu unserem endgespeisten Halbwellenstrahler. Der hat zwar die gleiche Länge wie die Gesamtlänge eines Halbwellendipols, aber ist leider kein Dipol, denn er hat nur einen Pol, bei dem man Strom reinschicken kann: sein luftiges Ende mit den angeblichen 3 Kilo-Ohm.
Wenn so ein Halbwellenstrahler strahlen soll, muss aber der Strom, den man hineinschickt, wieder zurückfließen zur Quelle (Sender). Ohne Rückfluss keine HF im Aether.

Wenn wir all die lustigen Schaltungen der endgespeisten Halbwellenstrahler ansehen, finden wir nirgends einen zweiten Pol. Die Abschirmung des Koaxialkabels endet auf der anderen Seite eines Schwingkreises oder eines Transformators, und die hängt einfach "in der Luft".
Zwar könnte der Strom auf die Idee kommen, direkt über den Schwingkreis oder Trafo zurückzufließen, doch dann würde die Antenne nichts davon abbekommen. Wir hätten einen Dummyload mit irgendeiner komischen Impedanz am Ende des Koax.

Doch der Strom ist nicht dumm. Er sucht sich einen anderen Rückweg. In den meisten Fällen ist das die Außenseite der Abschirmung. Es sei denn, der OM habe vorgesorgt und eine Art Radial (oder gar Erdung) angebracht: entweder am Fuss des 1:64 Trafos oder im Falle des Fuchskreises am anderen ("kalten") Ende des Parallelschwingkreises. Denn der Strom muss zurückfließen, koste es was es wolle. Und zwar genauso viel, wie hereinfließt.

Was bedeutet das nun für den Benutzer einer endgespeisten Halbwellenantenne:

a) Der Außenmantel Des Koaxkabels dient als Gegengewicht und ich habe mit Mantellwellen zu kämpfen.

oder

b) Ich benutze einen zusätzlichen Radial, der als Gegengewicht dient.

oder, am wahrscheinlichsten:

c) ich habe es mit a) und b) zu tun.

Bei QRP werden mich die Mantelwellen wohl weniger plagen. Bei QRO wird es aber kritisch.
Versuche ich die Mantelwelle mit einer Sperre abzublocken, sollte dies nicht in unmittelbarer Nähe des Anschlusspunktes bei der Antenne geschehen.

Steve Yates AA5TB hat die Endfeed genau unter die Lupe genommen. Auch er kommt zum Schluss:
Eine Endfeed-Antenne braucht einen Radial. Allerdings muss dieser im Falle eines endgespeisten Halbwellenstrahlers nicht sehr lange zu sein: Steve hat eine optimale Länge von 0.05 der Wellenlänge ermittelt. Fehlt der Radial, sucht sich die HF einen anderen Gegenpol - meist den Außenmantel des Koax.

Für die Endfeed mit Trafo (1:64 oder ähnlich) gilt genau das gleiche. Ob diese Antenne aber genauso effektiv ist, wie die Endfeed mit Schwingkreis, weiß ich nicht. Die gemessenen SWR-Kurven sehen nach zusätzlichen Verlusten aus, die durch den Trafo (UNUN) entstehen könnten. Auch der zusätzliche Kondensator, der in diesen Ausführungen auf der Primärwicklung liegt, nährt mein Misstrauen. Er soll angeblich das SWR auf bestimmten Bändern verbessern. Doch eine genaue Erklärung/Berechnung der Funktionsweise  habe ich bisher nirgend gefunden.

Bill Leonard N0CU zum Thema

Roy W. Lewallen W7EL zum Thema Balun

W8IJ zum Strahlungswiderstand von Antennen (deutsche Übersetzung)

Erfahrungsbericht und Beschreibung Endfeed mit Trafo



Mit diesem Beitrag schließe ich das Blog Antons Funkperlen vorläufig ab. Ob und wann es weiter geht, kann ich zurzeit nicht sagen. Eine Löschung des Blogs ist aber nicht vorgesehen. Ich werde mich in Zukunft anderen, neuen Projekten widmen.  
vy 73 de Anton HB9ASB













Donnerstag, 6. September 2018

Der 7. Zwerg: die Spiral-Loop Antenne



Wer heutzutage noch Platz hat, einen Fullsize Dipol für das 80m oder gar das 160m Band aufzuhängen, kann sich glücklich schätzen. Alle anderen müssen sich mit verkürzten Kompromiss-Antennen begnügen. Manch ein OM greift in dieser Situation auch gerne zu einer so genannten Wunderantenne. Das Netz ist voll davon. Hier im Blog habe ich schon einige davon vorgestellt.


Und hier eine selbstgebaute Velo-Antenne, womit wieder einmal bewiesen wäre, dass fast alles als Antenne zu gebrauchen ist, solange es aus leitendem Material besteht.

Längst haben Antennen keine Geheimnisse mehr. Und wer heute eine neue Antenne vorstellt, greift auf altbekannte Prinzipien zurück oder hält sich für Einstein. Hier hatte ich eine extrem verkürzte Antenne für das 160m Band mit der uralten Technik des Variometers vorgestellt.

Und hier der Renner meines Blogs, seit seinem Erscheinen: Funken ohne Antenne. Natürlich ein fauler Trick, denn der Blitzableiter ist sehr wohl eine Antenne und wie man sieht, nicht einmal so schlecht ;-)

Wunderantennen sind ein Dauerbrenner und nichts kann ihrer Beliebtheit Abbruch tun. CHA-250B / VA250 / HA-750BL / FALCON OUT-250-B / GP2500F / JTV680 sind bekannte käufliche Typen, ebenfalls die BB6W und BB7V von Diamond. Sie alle arbeiten nach dem gleichen Prinzip, und zwar - wie könnte es anders sein - mit einem UNUN. Sie basieren alle auf einer Antenne, die von OM Takagi JJ1GRK entwickelt wurde.
Martin G8JNJ hat diesen Typ Antenne eingehend untersucht und getestet.

Eine Wunderantenne, die immer wieder hochkommt wie ein Rülpser, ist die Spiral-Loop Antenne. Sie beruht auf dem Glauben, dass man einfach nur genügend Draht aufwickeln muss, um eine valable Antenne zu erhalten. Auch diese Antenne strahlt natürlich. Aber auch sie schafft es nicht, die unweigerlichen Verluste zu vermeiden, die "Zwergantennen" inherent ist. Generell gilt: je kleiner die Antenne, desto größer die Verluste. 

Hier die Spiral-Loop in der Version von Harry SM0VPO